Influence of Mechanical Vibrations on the Field Quality Measurements of LHC Interaction Region Quadrupole Magnets J. DiMarco, H. Glass, P. Schlabach, C. Sylvester, J.C. Tompkins Fermilab, Batavia, IL, USA J. Krzywinski Institute of Physics, Polish Academy of Sciences, Warsaw, Poland Abstract - The high gradient quadrupole magnets being developed by the US-LHC Accelerator Project for the LHC Interaction Regions have stringent field quality requirements. The field quality of these magnets will be measured using a rotating coil system presently under development. Mechanical vibrations of the coil during field quality measurements are of concern because such vibrations can introduce systematic errors in measurement results. This paper presents calculations of the expected influence of vibrations on field quality measurements and a technique to measure vibrations present in data acquired with standard "tangential-style" probes. Measured vibrations are reported and compared to simulations. Limits on systematic errors in multipole measurements are discussed along with implications for probe and measurement system design. #### I. INTRODUCTION Field requirements for low- β insertion quadrupoles can be very demanding because their strong focusing causes the beta function (and therefore the beam radius) to be considerably larger than in the arc magnets. The requirements on the accuracy of magnetic field measurements of these magnets is accordingly quite high. Several potential sources of measurement error can be neglected: 1) random noise effects are reduced through statistics, 2) electrical noise effects are negligible given sufficient signal, and 3) electronics and encoders non-linearity are insignificant when the appropriate bucking is applied [1]. Relative probe manufacturing precision of a radial winding, dr/r, influences relative harmonics measurements accuracy, dc_n/c_n , according to $$\frac{dc_n}{c_n} \approx n \frac{dr}{r} \quad ,$$ where c_n is the amplitude of the n^{th} harmonic and r is the radius of the coil. Since manufacturing precisions of ~50 μ m are common, the relative measurement accuracy for a 1 cm probe is only a few percent even for n=14; this is typically more than sufficient even without calibration. Erratic movements of the coil, however, warrant further attention since these were thought to limit high-order multipole measurements in HERA arc dipole and quadrupole magnets [2]. In this paper, the influence of irregularities in coil motion on the measurement accuracy of field harmonics is examined. First, expressions for fake multipoles caused by vibrations are determined, then a method to measure vibrations is given, and finally data from HGQ model magnets is discussed. # II. EFFECTS OF COIL MOTION ON MEASURED HARMONICS To examine the effects of coil motion, we begin with a single-wire radial probe (i.e. a probe which has one wire at a radius r with respect to its rotation axis, returning along r=0), and note that any rotating probe geometry can be constructed by superimposing a collection of such individual radial coils. We consider motion errors that stem from translations of the probe transverse to its axis of rotation, as well as angular errors caused by torsional vibrations. ### A. Transverse Probe Motion Errors The coordinate system for a rotation of the probe in the magnet is defined as in Fig. 1. Fig.1. Coordinate definitions for a single wire, W, moving about its rotation axis, B, in a magnet with field center defined by O. The average location of the probe center is denoted in the figure by point B, shown at an arbitrary motion displacement with respect to the magnet center, position O. The tangential component of the field is defined in the standard way, $$B_q(r, \mathbf{q}) = \Re \left\{ g r_0 \sum_{n=1}^{\infty} c_n \left(\frac{r}{r_0} \right)^{n-1} e^{inq} \right\}$$ (1) where $c_n = b_n + ia_n$ are the complex harmonic coefficients, r_0 the reference radius, g the quadrupole field gradient, and \Re denotes the real part of the complex quantity. The magnetic flux of the imperfect rotation as seen by the wire can then be expressed as $$\Phi(r, \mathbf{q}) = \frac{L}{n} g r_0^2 \Re \left\{ \sum_{n=1}^{\infty} \frac{1}{n} c_n \left[\left(\frac{r + \mathbf{d} r(\mathbf{q})}{r_0} \right)^n e^{in(\mathbf{q} + \mathbf{d} \mathbf{q}(\mathbf{q}))} - \left(\frac{R(\mathbf{q})}{r_0} \right)^n e^{inf(\mathbf{q})} \right] \right\}$$ (2) where L is the wire length, R is given by $R = \sqrt{x^2 + y^2}$, and $\mathbf{f} = \arctan \frac{y}{x}$. When $\frac{\mathbf{d}}{r}$ and $\mathbf{d}\mathbf{q}$ are small, they can be expressed as translations in x and y according to $$d\mathbf{q} \cong \frac{-x}{r} \sin \mathbf{q} + \frac{y}{r} \cos \mathbf{q} ,$$ $$\frac{d\mathbf{r}}{r} \cong \frac{x}{r} \cos \mathbf{q} + \frac{y}{r} \sin \mathbf{q} .$$ (3) Expanding (2) (keeping terms linear in $\frac{d}{r}$ and dq) and applying the relations of (3), gives $$\Phi(r,\boldsymbol{q}) = \frac{L}{n} g r_0^2 \Re \left\{ \sum_{n=1}^{\infty} \frac{1}{n} c_n \left(\frac{r}{r_0} \right)^n e^{inq} \left[1 + n \left(\frac{x(\boldsymbol{q}) + iy(\boldsymbol{q})}{r_0} \right) e^{-iq} \right] \right\}. (4)$$ Since systematic multipole measurement errors arise from motion errors which are a periodic function of θ (as these do not average out), we can express these movements of the coil axis in terms of the Fourier series $$x(\boldsymbol{q}) = \Re\left\{\sum_{n=1}^{\infty} x_k e^{ikq}\right\}, \quad y(\boldsymbol{q}) = \Re\left\{\sum_{n=1}^{\infty} y_k e^{ikq}\right\}, \quad (5)$$ where for each vibration order k, the x_k , y_k amplitudes are complex (having amplitude as well as some phase with respect to the rotation angle \mathbf{q}). Inserting (5) into (4) and defining $z_k \equiv \frac{x_k + iy_k}{r}$, the following expressions for false harmonics generated by the transverse motion errors are obtained: $$\mathbf{d}_{n} = \frac{n}{2} \frac{\sum_{k=1}^{\infty} \Re(z_{k}) \left[b_{|n-k|+1} \left(\frac{r}{r_{0}} \right)^{|n-k|+1} + b_{n+k+1} \left(\frac{r}{r_{0}} \right)^{n+k+1} \right]}{\left(\frac{r}{r_{0}} \right)^{n}} + \frac{n}{2} \frac{\sum_{k=1}^{\infty} \Im(z_{k}) \left[-a_{|n-k|+1} \left(\frac{r}{r_{0}} \right)^{n-k+1} \operatorname{sgn}(n-k+1) + a_{n+k+1} \left(\frac{r}{r_{0}} \right)^{n+k+1} \right]}{\left(\frac{r}{r_{0}} \right)^{n}}$$ (6) $$dt_{n} = \frac{n}{2} \frac{\sum_{k=1}^{\infty} \Im(z_{k}) \left[-b_{|n-k|+1} \left(\frac{r}{r_{0}} \right)^{|n-k|+1} + b_{n+k+1} \left(\frac{r}{r_{0}} \right)^{|n-k|+1} \right]}{\left(\frac{r}{r_{0}} \right)^{n}} \\ + \frac{n}{2} \frac{\sum_{k=1}^{\infty} \Re(z_{k}) \left[a_{|n-k|+1} \left(\frac{r}{r_{0}} \right)^{|n-k|+1} \operatorname{sgn}(n-k+1) + a_{n+k+1} \left(\frac{r}{r_{0}} \right)^{|n-k|+1} \right]}{\left(\frac{r}{r_{0}} \right)^{n}}.$$ # B. Angular Probe Motion Errors The derivation of multipole measurement errors for angular errors follows closely that for transverse motion errors. The measurement errors are given by $$d\boldsymbol{b}_{n} = \frac{n}{2} \frac{\sum_{k=1}^{\infty} \boldsymbol{h}_{k} \left[-b_{|n-k|} \left(\frac{r}{r_{0}} \right)^{n-k} \operatorname{sgn}(n-k) + b_{n+k} \left(\frac{r}{r_{0}} \right)^{n+k} \right]}{\left(\frac{r}{r_{0}} \right)^{n}},$$ $$-\frac{n}{2} \frac{\sum_{k=1}^{\infty} \boldsymbol{e}_{k} \left[a_{|n-k|} \left(\frac{r}{r_{0}} \right)^{n-k} + a_{n+k} \left(\frac{r}{r_{0}} \right)^{n+k} \right]}{\left(\frac{r}{r_{0}} \right)^{n}}$$ $$\left(\frac{r}{r_{0}} \right)^{n} + a_{n+k} \left(\frac{r}{r_{0}} \right)^{n+k} \right]}{\left(\frac{r}{r_{0}} \right)^{n}}$$ $$-\frac{n}{2} \frac{\sum_{k=1}^{\infty} \boldsymbol{e}_{k} \left[-b_{|n-k|} \left(\frac{r}{r_{0}} \right)^{n-k} \operatorname{sgn}(n-k) + b_{n+k} \left(\frac{r}{r_{0}} \right)^{n+k} \right]}{\left(\frac{r}{r_{0}} \right)^{n}}$$ where the Fourier components of the torsional vibrations are $$d\mathbf{q} = \Re \left\{ \sum_{k=1}^{\infty} d\mathbf{q}_{k} e^{ik\mathbf{q}} \right\}, \quad d\mathbf{q}_{k} = \mathbf{h}_{k} + i \mathbf{e}_{k}.$$ The correctness of (6) and (7) was checked using software which simulated probe motion in a magnetic field. Analysis of the simulated signals showed nearly exact agreement with errors expected from these equations. Examination of (6), (7) shows vibration multipole errors are strong functions of r_0/r for higher orders (and therefore damped if $r_0 < r$), implying probes with as large a radius as practicable should be used. ### III. MEASURING VIBRATIONS IN ROTATING COIL SYSTEMS A schematic of the cross-section for a typical bucked tangential rotating probe is shown in Fig. 2. Fig.2. Schematic cross-section of a bucked tangential winding probe. This probe design uses the tangential winding for measurement of higher order harmonics, while the bucking windings measure and remove the fundamental (quadrupole) field component and the large dipole 'feed-down' component (present when the probe is off-center in the field). Two bucking windings are present for each order of harmonic to be bucked out. This allows combination of buck windings to match the phase of the tangential winding to as high degree as possible. ## A. Transverse Probe Vibrations The magnetic field measured by a rotating coil probe in the presence of transverse vibrations is given by (4). Since the error term has dipole periodicity, the dipole windings are sensitive to these variations in flux. Expressing the flux measured in the two dipole windings (D₁and D₂) with cosine functions separated in phase by g(the angle between the two windings) plus the phase error from the vibrations (given approximately by x(q)/r), gives $$\Phi_{D1}(\mathbf{q}) = f_{D1} \cos \left(\mathbf{q} + \mathbf{a} + \frac{x(\mathbf{q})}{r} \right)$$ $$\Phi_{D2}(\mathbf{q}) = f_{D2} \cos \left(\mathbf{q} + \mathbf{a} + \mathbf{g} + \frac{x(\mathbf{q})}{r} \right)$$ (8) where \boldsymbol{a} is the phase angle of D_1 with respect to \boldsymbol{q} and the f's are the amplitudes of the measured flux. Solving (10) for $x(\boldsymbol{q})/r$, gives the vibration error as a function of \boldsymbol{q} $$\frac{x(\boldsymbol{q})}{r} = \frac{\Phi_{D1}(\boldsymbol{q})}{f_{D1}} \cos(\boldsymbol{q} + \boldsymbol{a} + \boldsymbol{g}) - \frac{\Phi_{D2}(\boldsymbol{q})}{f_{D2}} \cos(\boldsymbol{q} + \boldsymbol{a}) \\ \sin(\boldsymbol{g})$$ (9) A similar result for the $y(\mathbf{q})/r$ vibration error function can be obtained by expressing the dipole buck windings in terms of sine functions, yielding $$\frac{y(\boldsymbol{q})}{r} = \frac{\frac{\Phi_{D1}(\boldsymbol{q})}{f_{D1}}\sin(\boldsymbol{q} + \boldsymbol{a} + \boldsymbol{g}) - \frac{\Phi_{D2}(\boldsymbol{q})}{f_{D2}}\sin(\boldsymbol{q} + \boldsymbol{a})}{\sin(\boldsymbol{g})} . (10)$$ #### B. Torsional Probe Vibrations For torsional vibrations, the quadrupole buck windings are used to determine the error function. The flux from the quadrupole windings (including terms for angle errors caused by torsional vibrations) can be expressed as $$\Phi_{Q1}(\mathbf{q}) = f_{Q1}\cos(2\mathbf{q} + \mathbf{a} + 2\mathbf{d}\mathbf{q}(\mathbf{q}))$$ $$\Phi_{Q2}(\mathbf{q}) = f_{Q2}\cos(2\mathbf{q} + \mathbf{a} + 2\mathbf{g} + 2\mathbf{d}\mathbf{q}(\mathbf{q})),$$ from which the dy/qtorsional vibration error function can be determined as $$\boldsymbol{dq}(\boldsymbol{q}) = \frac{\frac{\Phi_{\varrho 1}(\boldsymbol{q})}{f_{\varrho 1}}\cos(2\boldsymbol{q} + \boldsymbol{a} + 2\boldsymbol{g}) - \frac{\Phi_{\varrho 2}(\boldsymbol{q})}{f_{\varrho 2}}\cos(2\boldsymbol{q} + \boldsymbol{a})}{2\sin(2\boldsymbol{g})}. (11)$$ Note that since errors in angular position can effectively be removed by measuring the torsional vibration error function and correcting for it, in principle it should be possible to make measurements in quadrupole magnets without angular encoders (indexing only the '0' position of each rotation). #### C. Vibration measurement results Deviations in the transverse or angular motion of the coil during probe rotation can be measured from probe data using (9)-(11). To check to what extent these equations correctly determine the vibrations present, simulated signals were generated using the known magnetic field and the measured probe vibrations as input. A sample comparison of measured and simulated signals is shown in Fig. 3. Fig.3. Comparison of measured dipole buck winding signal and signal generated from simulation with and without measured vibrations (note that the dipole and quadrupole orders have been suppressed for clarity). The fairly good agreement between measured and simulated data indicates that the vibrations determined from (9)-(11) are in fact present during measurement. Therefore, measured vibrations can be used to provide reasonable estimates of multipoles errors. Typical amplitude spectra for transverse and torsional vibrations during recent measurements at the Fermilab Vertical Magnet Test Facility (VMTF) are given in Table I, along with the expected false harmonics in the tangential winding from this set of vibrations. The VMTF probe has a radius of r = 0.0196m. TABLE I TYPICAL VIBRATIONS FOR MEASUREMENTS AT VMTF AND THEIR SIMULATED ERRORS IN UNBUCKED TAN SIGNAL | | Vibration A | Error | | |----|---------------------|-----------------|--------------| | n | Lateral (m) / r (m) | Torsional (rad) | units @ 17mm | | 1 | 0.006618 | 0.000060 | 0.000 | | 2 | 0.000137 | 0.000016 | 0.044 | | 3 | 0.000652 | 0.000015 | 0.148 | | 4 | 0.000044 | 0.000019 | 0.776 | | 5 | 0.000025 | 0.000063 | 0.259 | | 6 | 0.000033 | 0.000064 | 0.600 | | 7 | 0.000020 | 0.000061 | 0.180 | | 8 | 0.000018 | 0.000064 | 0.116 | | 9 | 0.000015 | 0.000052 | 0.025 | | 10 | 0.000013 | 0.000056 | 0.058 | | 11 | 0.000010 | 0.000034 | 0.027 | | 12 | 0.000008 | 0.000025 | 0.074 | Note that some error in the vibration spectrum determination is expected as e.g. the n=4 torsion vibrations generate δb_2 , which is indistinguishable from the main field and does not show up in the torsional analysis. Also, some multipole content appearing in the windings may originate from imperfections in probe manufacturing but would be interpreted as stemming from vibrations (e.g. the presence of δb_1 in the quad windings). Finally, multipole content to which a particular winding has sensitivity (e.g. b_6 in the quad buck windings) is interpreted as stemming from vibrations rather than as a property of the magnetic field. ## IV. MEASUREMENTS WITH INDUCED VIBRATIONS Table I, shows substantial multipole errors from vibrations are to be expected. However, bucking helps eliminate the sensitivity of the probe to the fundamental field, allowing much greater tolerance to vibrations. Measurements were made at VMTF with and without induced vibrations to determine 1) whether measured multipole errors match those predicted by simulation of vibration errors, and 2) to what extent digital bucking subsequently removes vibration effects. TABLE II INDUCED VIBRATION SPECTRA FOR MEASUREMENTS AT VMTF | | Lateral Ampl. (m) / r (m) | | Torsional Ampl. (radians) | | |----|---------------------------|----------|---------------------------|----------| | n | light | heavy | light | heavy | | 1 | 0.011695 | 0.011173 | 0.000137 | 0.000197 | | 2 | 0.003526 | 0.003325 | 0.000034 | 0.000202 | | 3 | 0.000916 | 0.000893 | 0.000029 | 0.000327 | | 4 | 0.000703 | 0.000820 | 0.000027 | 0.000219 | | 5 | 0.000160 | 0.000389 | 0.000111 | 0.002630 | | 6 | 0.000247 | 0.000275 | 0.000118 | 0.000726 | | 7 | 0.000115 | 0.000221 | 0.000047 | 0.000487 | | 8 | 0.000136 | 0.000115 | 0.000098 | 0.000420 | | 9 | 0.000130 | 0.000144 | 0.000124 | 0.000411 | | 10 | 0.000073 | 0.000121 | 0.000179 | 0.000858 | | 11 | 0.000084 | 0.000069 | 0.000148 | 0.000246 | | 12 | 0.000045 | 0.000086 | 0.000034 | 0.000200 | To induce torsional vibrations, a fixed shim was forced into varying levels of contact (light, heavy) with a pentagonal attachment on the probe shaft during probe rotation. Transverse vibrations were induced under the same arrangement but with less lateral constraint on the probe. The lateral and torsional vibration spectra for these runs is summarized in Table II. $TABLE\ III$ Multipole Errors From Induced Vibrations: Probe Meas., And Simulation Using Measured Vibrations (Units At $r_0=0.017m)$ | | light vibration | | heavy vibration | | |----|-----------------|--------|-----------------|--------| | n | meas | sim | meas | sim | | 1 | 0.064 | 0.070 | 0.182 | 0.159 | | 2 | 1.901 | 1.574 | 3.624 | 4.150 | | 3 | 15.009 | 16.330 | 42.238 | 36.976 | | 4 | 3.336 | 3.899 | 3.894 | 6.879 | | 5 | 3.472 | 1.637 | 3.409 | 2.755 | | 6 | 1.547 | 0.563 | 2.409 | 5.758 | | 7 | 1.930 | 0.708 | 8.522 | 13.618 | | 8 | 1.487 | 1.062 | 5.020 | 4.201 | | 9 | 0.994 | 0.436 | 1.261 | 0.936 | | 10 | 0.241 | 0.523 | 1.149 | 0.744 | | 11 | 0.719 | 0.435 | 1.473 | 1.598 | | 12 | 0.762 | 0.595 | 2.691 | 2.438 | For each level of induced vibration, the actual multipole errors present in the unbucked tangential winding measurements are compared to the errors obtained through simulation using measured vibrations. These data are summarized in Table III and show the presence of very large multipole errors. Rough agreement is seen between actual TABLE IV MULTIPOLE ERRORS FROM INDUCED VIBRATIONS: AFTER BUCKING TAN WITH QUAD. AND DIPOLE WINDINGS (UNITS AT $r_0=0.017m$) | n | light | heavy | |----|-------|-------| | 1 | 0.001 | 0.002 | | 2 | 0.041 | 0.041 | | 3 | 0.036 | 0.042 | | 4 | 0.006 | 0.010 | | 5 | 0.013 | 0.019 | | 6 | 0.008 | 0.001 | | 7 | 0.001 | 0.005 | | 8 | 0.002 | 0.006 | | 9 | 0.001 | 0.000 | | 10 | 0.001 | 0.002 | | 11 | 0.001 | 0.004 | | 12 | 0.000 | 0.000 | measurements and the expectation using measured vibrations. With bucking, the effects of vibration are greatly reduced, as summarized in Table IV. The results from Tables III and IV suggest that for the probe system at VMTF, we can rely on the digital bucking to reduce vibration effects by a factor of 100-1000 even under extreme vibration conditions. Applying reduction factors in this range to the multipole errors of Table I shows that vibration effects for the VMTF data are small compared to measurement requirements [3]. Note that if bucking reduces multipole errors stemming from angular variations enough, multipoles obtained in the encoder-less system mentioned in III.B would be correct even without applying corrections for angular position errors. #### V. CONCLUSIONS Calculations for the effects of vibrations on an arbitrary rotating coil system have been presented. Also, a method has been presented whereby the lateral and torsional vibration errors in a measurement system can be measured *in situ*, given the availablity of two dipole and two quadrupole buck windings on a rotating coil probe. Calculations and measured vibrations in VMTF data (with and without externally induced vibrations) have been compared to simulations with good results. Vibrations are not a significant source of error in the field quality measurements at VMTF. Determining whether a rotating coil measurement system can achieve a given level of measurement accuracy can be accomplished by: 1) measuring or estimating the vibration environment the system will operate in, 2) determining the resulting calculated or simulated multipole errors $(\delta b_n, \delta a_n)$, and 3) estimating the final errors from vibration after conservative inclusion of the effects of bucking dipole and quadrupole components. These techniques also open the possibility of developing encoder-less rotating coil systems for quadrupole magnets. ## REFERENCES - [1] K. Kim, "Harmonics Generated by a Nonlinear Analog-to-Digital Converter (ADC)", SSCL MD-TA-310, 1992. - [2] R. Meinke, P. Schmuser, Y. Zhao, "Methods for Harmonics Measurements in the Superconducting HERA Magnets and Analysis of Systematic Errors", DESY-HERA-91-13, 1991. - [3] J.Wei et al., "Interaction Region Local Corrector for the Large Hadron Collider", 1999 Particle Accelerator Conference, New York, 1999.